Classification of computer networks
[By network layer
Computer networks may be classified according to the network layer at which they operate according to some basic reference models that are considered to be standards in the industry such as the seven layer OSI reference model and the four layer Internet Protocol Suite model. In practice, the great majority of networks use the Internet Protocol (IP) as their network layer. Some networks, however, are using IP Version 6 IPv6, usually in coexistence with IPv4. IPv6 use is often experimental. it is an interconnection of a group of computers in other words.
By scale
Computer networks may be classified according to the scale: Local Area Network (LAN), Metropolitan area network (MAN), or Wide area network (WAN). As Ethernet increasingly is the standard interface to networks, these distinctions are more important to the network administrator than the end user. Network administrators may have to tune the network, based on delay that derives from distance, to achieve the desired Quality of Service (QoS). The primary difference in the networks is the size.
By connection method
Wireless LAN technology is built to connect devices without wiring. These devices use a radio frequency to connect.
By functional relationship
Computer networks may be classified according to the functional relationships which exist between the elements of the network, for example Active Networking, Client-server and Peer-to-peer (workgroup) architectures.
By network topology
Computer networks may be classified according to the network topology upon which the network is based, such as Bus network, Star network, Ring network, Mesh network, Star-bus network, Tree or Hierarchical topology network, etc.
Network Topology signifies the way in which intelligent devices in the network see their logical relations to one another. The use of the term "logical" here is significant. That is, network topology is independent of the "physical" layout of the network. Even if networked computers are physically placed in a linear arrangement, if they are connected via a hub, the network has a Star topology, rather than a Bus Topology. In this regard the visual and operational characteristics of a network are distinct.
By protocol
Computer networks may be classified according to the communications protocol that is being used on the network. See the articles on List of network protocol stacks and List of network protocols for more information.
Types of networks:
Personal Area Network (PAN)
A personal area network (PAN) is a computer network used for communication among computer devices close to one person. Some examples of devices that may be used in a PAN are printers, fax machines, telephones, PDAs, or scanners. The reach of a PAN is typically within about 20-30 feet (approximately 4-6 Meters). PANs can be used for communication among the individual devices (intrapersonal communication), or for connecting to a higher level network and the Internet (an uplink).
Personal area networks may be wired with computer buses such as USB and FireWire. A wireless personal area network (WPAN) can also be made possible with network technologies such as IrDA and Bluetooth.
Local Area Network (LAN)
A network covering a small geographic area, like a home, office, or building. Current LANs are most likely to be based on Ethernet technology. For example, a library will have a LAN for users to connect to the internet. All of the computers in the library are connected through a system of hubs and eventually connect to the internet. The hub is just like what it sounds. A bicycle wheel uses a hub and spokes - all the spokes connect to a central point - the hub.
LANs use different technologies to link computers together. Depending on the circumstance, the computers in the network might be connected using cables and hubs. Other networks might be connected strictly wirelessly. It depends on the number of PCs that you are trying to connect, the physical layout of your workspace, and the various needs that you have as you develop your network.
The defining characteristics of LANs, in contrast to WANs (wide area networks), include their much higher data transfer rates, smaller geographic range, and lack of a need for leased telecommunication lines. Current LAN technologies generally operate at speeds up to 10 Gbit/s. This is the data transfer rate. IEEE has projects investigating the standardization of 100 Gbit/s, and possibly 40 Gbit/s. Inverse multiplexing is commonly used to build a faster aggregate from slower physical streams, such as bringing 4 Gbit/s aggregate stream into a computer or network element with four 1 Gbit/s interfaces.
Wide Area Network (WAN)
A WAN is a data communications network that covers a relatively broad geographic area (i.e. one country to another and one continent to another continent) and that often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.
The highest data rate commercially available, as a single bitstream, on WANs is 40 Gbit/s, principally used between large service providers. Wavelength Division Multiplexing, however, can put multiple 10 or 40 Gbyte/s streams onto the same optical fiber.
Internetwork
Two or more networks or network segments connected using devices that operate at layer 3 (the 'network' layer) of the OSI Basic Reference Model, such as a router. Any interconnection among or between public, private, commercial, industrial, or governmental networks may also be defined as an internetwork.
In modern practice, the interconnected networks use the Internet Protocol. There are at least three variants of internetwork, depending on who administers and who participates in them:
- Intranet
- Extranet
- "The" Internet
Intranets and extranets may or may not have connections to the Internet. If connected to the Internet, the intranet or extranet is normally protected from being accessed from the Internet without proper authorization. The Internet itself is not considered to be a part of the intranet or extranet, although the Internet may serve as a portal for access to portions of an extranet.
Intranet
An intranet is a set of interconnected networks, using the Internet Protocol and uses IP-based tools such as web browsers, that is under the control of a single administrative entity. That administrative entity closes the intranet to the rest of the world, and allows only specific users. Most commonly, an intranet is the internal network of a company or other enterprise.
Extranet
A extranet is network or internetwork that is limited in scope to a single organization or entity but which also has limited connections to the networks of one or more other usually, but not necessarily, trusted organizations or entities (e.g., a company's customers may be provided access to some part of its intranet thusly creating an extranet while at the same time the customers may not be considered 'trusted' from a security standpoint). Technically, an extranet may also be categorized as a CAN, MAN, WAN, or other type of network, although, by definition, an extranet cannot consist of a single LAN, because an extranet must have at least one connection with an outside network.
Basic Hardware Components
All networks are made up of basic hardware building blocks to interconnect network nodes, such as Network Interface Cards (NICs), Bridges, Hubs, Switches, and Routers. In addition, some method of connecting these building blocks is required, usually in the form of galvanic cable (most commonly Category 5 cable). Less common are microwave links (as in IEEE 802.11) or optical cable ("optical fiber").
Network Interface Cards
A network card, network adapter or NIC (network interface card) is a piece of computer hardware designed to allow computers to communicate over a computer network. It provides physical access to a networking medium and provides a low-level addressing system through the use of MAC addresses. It allows users to connect to each other either by using cables or wirelessly.
Repeaters
A repeater is an electronic device that receives a signal and retransmits it at a higher level or higher power, or onto the other side of an obstruction, so that the signal can cover longer distances without degradation.
Because repeaters work with the actual physical signal, and do not attempt to interpret the data being transmitted, they operate on the Physical layer, the first layer of the OSI model.
Hubs
A hub contains multiple ports. When a packet arrives at one port, it is copied the packets to all the ports of the hub. When the packets are copied, the destination address in the frame does not change to a broadcast address. It does this in a rudimentary way, it simply copies the data to all of the Nodes connected to the hub. [2]
Bridges
A network bridge connects multiple network segments at the data link layer (layer 2) of the OSI model. Bridges do not promiscuously copy traffic to all ports, as does a hub. but learns which MAC addresses are reachable through specific ports. Once the bridge associates a port and an address, it will send traffic for that address only to that port. Bridges do send broadcasts to all ports except the one on which the broadcast was received.
Bridges learn the association of ports and addresses by examining the source address of frames that it sees on various ports. Once a frame arrives through a port, its source address is stored and the bridge assumes that MAC address is associated with that port. The first time that a previously unknown destination address is seen, the bridge will forward the frame to all ports other than the one on which the frame arrived.
Bridges come in three basic types:
- Local bridges: Directly connect local area networks (LANs)
- Remote bridges: Can be used to create a wide area network (WAN) link between LANs. Remote bridges, where the connecting link is slower than the end networks, largely have been replaced by routers.
- Wireless bridges: Can be used to join LANs or connect remote stations to LANs
Switches
Switches are a marketing term that encompasses routers and bridges, as well as devices that may distribute traffic on load or by application content (e.g., a Web URL identifier). Switches may operate at one or more OSI layers, including physical, data link, network, or transport (i.e., end-to-end). A device that operates simultaneously at more than one of these layers is called a multilayer switch.
Overemphasizing the ill-defined term "switch" often leads to confusion when first trying to understand networking. Many experienced network designers and operators recommend starting with the logic of devices dealing with only one protocol level, not all of which are covered by OSI. Multilayer device selection is an advanced topic that may lead to selecting particular implementations, but multilayer switching is simply not a real-world design concept.
No comments:
Post a Comment